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 The concept of change over time is fundamental to many phenomena examined in 

research in the behavioral and social sciences.  In many areas of investigation (e.g., skill 

acquisition, organizational newcomer socialization), the focus of the study is explicitly on the 

conceptualization and assessment of change over time.  In military contexts, explicating the 

various facets of change over time is critical when tracking how variables such as soldier 

adaptation, stress, strain, and understanding and commitment to mission changes in both 

short-term and long-term operations either of a combat or non-combat (e.g., humanitarian 

assistance) nature.  For example, soldier commitment to mission may undergo a change 

process represented by a conceptual differentiation over time such that the perception moves 

from a unitary or global conceptualization at initial phases to several distinct but correlated 

dimensions in intermediate phases to separate unrelated dimensions in final phases.  

Specifically, initial conceptualizations may be best represented by a global and unitary 

commitment dimension but later conceptualizations may be best represented by distinct and 

relatively unrelated dimensions such as affective (emotional), normative (obligatory), and 

continuance (instrumental) commitments. 

 Even when the concept of change over time is less explicit, most studies require some 

form of theory or conceptualization of change over time and some form of quantitative 

assessment or analysis of change is performed for the purpose of making substantive 

inferences. Because change over time is fundamental in almost all behavioral and social 

science phenomena, it is important that researchers possess a good working knowledge of the 

critical issues involved in the modeling of change over time. 

 The objective of this research report is to provide a state-of-the art review of the 

issues and methods relating to the modeling of change over time.  The focus is on the 

quantitative assessment of the concept of change of time, which includes issues of 

conceptualization, measurement, data analysis, and interpretation.  The rationale and 

motivation for this research originated from the author’s observations (specifically in the past 
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decade in the capacities of journal editor, reviewer, symposium discussant, and workshop 

leader) on the need for a comprehensive and relatively non-technical reference on and 

integration of various issues in the modeling of change over time that will facilitate 

researchers studying substantive change phenomena who may not be methodological experts 

on analysis of longitudinal data.   

Although there are several books, book chapters, and journal articles on longitudinal 

data analysis, they tend to be highly technical and narrow in focus in presenting specific data 

analysis issues (e.g., debate on the use of difference scores, description of a specific 

technique of longitudinal analysis) and there is little or no attempt to relate specific analysis 

issues to the multifaceted concept of change over time in such a way that integrates 

conceptualizations, measurement, analysis, and interpretation of findings.  By providing a 

comprehensive and integrative approach to modeling change over time, this research fills an 

important gap in the extant methodological literature and builds an interface between highly 

technical methodological works and researchers investigating substantive phenomena in the 

behavioral and social sciences.  Other specific outstanding features of this research, which are 

not present in existing research literature on longitudinal data analysis, include (1) specifying 

the fundamental questions on change over time, (2) discussing the problems with application 

of traditional techniques to assess change over time, (3) explaining conceptual issues and 

technical details on the assessment of measurement invariance over time, (4) discussing and 

illustrating multivariate assessment of change, (5) discussing the problems of common 

method variance in the study of change over time, and (6) explicating the study of change 

over time in the contexts of cross-cultural research and multilevel research. 

This final report summarizes the comprehensive and integrative approach to the issues 

and techniques of modeling change over time.  Given the wide applicability of the 

methodological issues discussed and its relatively non-technical nature, this final report will 

have appeal to empirical researchers involved in substantive research including military 

studies, in addition to those primarily interested in measurement and methodology.  The 

target audience will include researchers from many diverse fields of substantive research 

including those from disciplines in the organizational, behavioral, and social sciences.  

Specific disciplines that will be especially relevant include military psychology, industrial 

and organizational psychology, marketing, organizational behavior, human resources 

management, developmental psychology, clinical psychology, social psychology, sociology, 

political science, and education.  It is hoped that this final report may be used as a regular 

concise but relatively comprehensive reference for empirical researchers. 
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Modeling Change over Time 

For many decades in I/O psychology, predictor-criterion relationships have been 

described in terms of static models of the criterion without any attention paid to the temporal 

aspects of the criterion constructs including what and how changes may occur over time.  

Consider the example of job performance models.  An individual’s job performance may 

change over time in various ways (e.g., increase/decrease in level, changes in the 

number/nature of underlying dimensions) and these intraindividual changes are important for 

understanding and predicting job performance.  For example, when performance changes 

over time either in terms of level or dimensionality, using a sample of job incumbents with 

varying levels of job tenure in a validation study could affect and confound estimates of 

validity and the interpretation of predictor-criterion relationships. 

Advances in longitudinal analytical strategies, especially those that involve latent 

variable modeling, provide us with both the conceptual basis and statistical method to 

hypothesize, test, and interpret criterion (e.g., performance) changes over time which in turn 

allows us to draw practical implications (e.g., personnel selection issues) such as changes in 

test validities, changes in mean levels of the criterion, changes in rank order of individuals’ 

criterion scores, and changes in criterion dimensionality (i.e., number and/or nature of 

dimensions). 

The analysis of change over time has to be guided by the conceptualization of change 

over time.  By first specifying the specific facet of change over time, appropriate longitudinal 

designs and data analytic techniques can be applied to implement research that answers 

important questions relating to criterion changes over time.  In the example of job 

performance changes, these questions may include the nature of new performance dimensions 

associated with changes in job demands or different points in time over the individual’s job 

tenure; describing, predicting, and explaining the form of the intraindividual change 

trajectory (e.g., linear versus quadratic, increasing versus decreasing) and individual 

differences in the rate of intraindividual change; and modeling associations among 

performance dimensions and the trajectories by which they change over time. 

 

Fundamental Questions on Changes Over Time 

The various specific facets of change over time are related to distinct fundamental 

questions that may be asked of the nature of change that may occur over time.  Chan (1998) 

explicated nine such questions.  These questions highlight the complexities involved when 

considering change over time and the importance of clarifying the specific question asked of 
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the change phenomenon and relating it to the analytical strategy and the substantive 

inferences made from data.  These questions, addressed in detail in Chan (1998), are briefly 

summarized below. 

Q1. Is an observed change over time (and observed between-group differences in 

change over time) due to meaningful systematic differences or random fluctuations resulting 

from measurement error?  If measurement error is not adequately taken into account when 

specifying the data analysis model and estimating the parameters, results of the analyses can 

be severely affected by measurement error.  The classic independence of errors assumption, 

which is common among many traditional data analysis procedures, may be violated when 

assessing change over time in longitudinal designs, particularly when the longitudinal data 

are collected on measurement occasions closely spaced together using identical measures. 

Q2. Is the change over time reversible?  The question on the reversibility of 

change over time can be construed in terms of the functional form of the intraindividual 

growth (change) trajectory.  For example, monotonically increasing or decreasing (e.g. linear) 

functional forms represent irreversible (within the time period studied) change in the sense 

that there is no returning or restoring to previous levels on the focal variable, at least during 

the period under investigation.  On the other hand, a non-monotonic functional form (e.g., an 

“inverted U”) would represent reversible change over time. 

Q3. Is the change over time proceeding in one single pathway or through multiple 

different pathways?   Two (or more) groups of individuals may follow the same or different 

trajectories as they proceed from one time point to another (through intervening time points 

measured in the study).  For example, in a four-time point study (e.g., organizational 

newcomer adaptation study with adaptation outcomes measured at 4 time points equally 

spaced at one-month measurement interval), two groups (e.g., locals and expatriates) may 

have the same value on the focal variable at initial status (Time 1) and at end point (Time 4) 

but one group follows a positive linear trajectory and the other follows a positively 

accelerated monotonically increasing trajectory.  That is, change from one value of the focal 

variable at Time 1 to another value at Time 4 could proceed through multiple different 

pathways. 

Q4. Is the change on the quantitative variable proceeding in a gradual manner or is 

it best characterized as large magnitude shifts at each time interval?   Quantitative change 

over time may proceed gradually as characterized by a linear trajectory with a low slope or it 

may be characterized in terms of large magnitude changes as represented by a high slope. 
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Q5. Is the change over time (or across groups) to be considered as alpha, beta, or 

gamma change?  Golembiewski, Billingsley, and Yeager (1976) distinguished three types of 

change: alpha, beta, and gamma.  Alpha change refers to changes in absolute levels given a 

constant conceptual domain and a constant measuring instrument.  For example, if job 

satisfaction was adequately measured both at Time 1 and Time 2 in terms of reliability and 

validity such that the same construct was measured at both time points and with the same 

precision, then the difference in the satisfaction scores between the two time points represent 

an alpha change in satisfaction and the change may be directly interpreted as a change in the 

absolute level of job satisfaction.  We can meaningfully speak of alpha change only when 

there is measurement invariance of responses across time.  Measurement invariance across 

time exists when the numerical values across time waves are on the same measurement scale.  

Measurement invariance could be construed as absence of beta and gamma changes.  Beta 

change refers to changes in absolute level complicated by changes in the measuring 

instrument given a constant conceptual domain.  Beta change occurs when there is a 

recalibration of the measurement scale.  That is, in beta change, the observed change results 

from an alteration in the respondent’s subjective metric or evaluative scale rather than an 

actual change in the construct of interest.  For example, because of the respondent’s increased 

leniency in ratings over time, a rating of 6 given at Time 2 may be defined by the respondent 

as was rating of 5 at Time 1.  Gamma change refers to changes in the conceptual domain.  

Gamma change (i.e., change in the meaning or conceptualization of the construct(s) of 

interest) can take a variety of forms.  For example, in the language of factor analysis, the 

number of factors (a factor representing a construct) assessed by a given set of measures may 

change from one time point to another.  To illustrate, in a study of changes in performance 

over time, performance may undergo a type of gamma change represented by factorial 

integration of performance measurement so that performance components (factors) become 

increasingly interrelated over time such that performance at early time points are best 

represented as multiple distinct and relatively uncorrelated factors, at mid time points are best 

represented as multiple highly correlatede factors and at later time points are best represented 

as a single factor. 

Q6. Is the change over time occurring at the individual, group, or both levels of 

conceptualization?  Change over time can be conceptualized and assessed at the individual 

level, group level (e.g., team, department), or both levels.  Any analytic technique that is 

restricted to only one level of conceptualization and analysis is limited in an important way 

because the assumption of no or “irrelevant” change at the other level is not tested. 
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Q7. In addition to detecting interindividual differences in intraindividual change, 

can we predict (and hence increase our understanding of) these differences?   Individuals may 

systematically differ in the way they change over time.  We can increase our understanding if 

the longitudinal modeling can incorporate additional variables and assess their efficacy in 

predicting the different aspects of these individual differences (e.g., individual differences in 

rate of change, individual differences in trajectory forms). 

Q8. Are there cross-domain relationships in change over time?  Changes in one 

focal variable may be systematically related to changes in another focal variable.  For 

example, during the period of newcomer adaptation, the rate of change in information 

seeking may be positively correlated with the rate of change in task mastery.  An adequate 

longitudinal modeling procedure would allow us to explicitly model these cross-domain 

relationships. 

Q9. Do the various relationships with respect to specific facets of change over time 

vary or remain invariant across groups?   Different groups may either share or differ in the 

various specific facets of intraindividual changes.  An adequate longitudinal modeling 

procedure would allow us to explicitly model and test the various hypotheses concerning 

between-group differences or similarities in change over time. 

 

Limitations of Traditional Techniques for Modeling Changes Over Time 

Chan (1998) provided a detailed description of these nine questions and explained 

why traditional techniques such as difference scores analysis, repeated measures ANOVA, 

and time series are limited in their ability to adequately address these questions. 

To illustrate the limitations of traditional techniques for modeling changes over time, 

consider time series models which are probably the most commonly used longitudinal data 

analysis technique.  Time series models were developed to describe a relatively long series of 

observations typically consisting of at least twenty or thirty time points.  In general, time 

series models may be classified into time domain and frequency domain models.  

Autoregressive integrated moving average (ARIMA) models are representative of time 

domain models (e.g., Box & Jenkins, 1976) whereas spectral analysis models are 

representative of frequency domain models (Larsen, 1990). 

Time domain and frequency domain models differ in how they represent the same 

time series information.  Time domain models analyze the longitudinal data and make 

inferences based on the autocorrelations in the sequence of observations.  Autocorrelation 

refers to the correlation between later items in a time series and earlier items (when the time 
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series is completely random, the autocorrelation is zero).  The time series is expressed in 

terms of autoregressive or some other time-based parameters.  In these models, a given 

observation in time is characterized as a weighted function of past observations of the same 

underlying process.  These time series models, such as ARIMA models, are typically used for 

forecasting purposes.  Frequency domain models, on the other hand, express and account for 

the time series data in terms of trigonometric functions such as sine and cosine functions.  

These functions are used to represent rhythms or cycles assumed to underlie the time series 

data.  Clearly, the choice between the two classes of models is dependent on the nature of the 

research question at hand.  For example, questions that forecast time points call for time 

domain models whereas those that assess rhythms or cycles within the data call for frequency 

domain models. 

Although both classes of time series models have potential applied value in 

substantive longitudinal research in I/O psychology (e.g., time domain models can be applied 

to the study of predicting future job performance rankings from past job performance 

rankings; frequency domain models can be applied to the study of mood variability at the 

workplace), the requirement of a large number of repeated measurements in the longitudinal 

design limits the actual applied value of these time series models, at least in the current state 

of I/O research.  More importantly, as explained in Chan (1998), time series models are not 

well equipped to assess the various aspects of intraindividual change discussed above.  For 

example, time series models cannot be readily used to model interindividual differences in 

intraindividual changes.  It is possible to fit a time series to an individual’s repeated 

observations (hence compare different individuals’ function by comparing distinct time series 

models) or to the summary statistics of a group of individuals (hence compare different 

groups’ functions by comparing distinct time series models), but it is not possible to do both 

at the same time.  That is, it is not possible, within a single time series model, to examine a 

group’s intraindividual change function at the aggregate (group) level and, at the same time, 

individual differences in intraindividual change functions. 

One fundamental question on intraindividual change is whether the same construct is 

in fact being observed over time and, if so, whether it is being assessed with the same 

precision.  This issue of measurement invariance (of repeated responses on the identical 

measure) over time is statistically fundamental because virtually all the traditional techniques 

such as time series models, repeated measures ANOVA and difference sores analysis are 

applied in a manner that assumes, rather than directly tests, the assumption of measurement 

invariance of intraindividual repeated responses over time.  In addition, depending on the 
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research question, certain measurement invariance questions may be theoretically interesting 

in their own right (i.e., reflecting a substantive intraindividual change process), apart from the 

issue of reflecting a statistical hurdle to be cleared prior to assessing substantive 

intraindividual change.  For example, a lack of measurement invariance of responses over 

time may reflect a substantive intraindividual change process associated with a type of 

gamma change in performance dimensions over time. 

 

Latent Variable Approaches to Modeling Changes Over Time 

Latent variable approaches are well suited for longitudinal modeling because they can 

explicitly take into account both cross-sectional and longitudinal measurement errors.  Hence, 

the researcher is able to model a variety of error covariance structures and assess any 

distorting effects that cross-sectional or longitudinal measurement errors may have on the 

various parameter estimates of true change.  In addition, latent variable approaches are highly 

flexible and powerful because a variety of latent variable (i.e., SEM) models can be fitted to 

the longitudinal data to describe, in alternative ways, the change over time. 

Latent growth modeling (LGM) offers a direct and comprehensive assessment of the 

nature of true intraindividual changes and interindividual differences in these changes.  LGM 

also allows these differences to be related to individual predictors.  A LGM model can be 

elaborated into a multiple-indicator latent growth model (MLGM).  MLGM is essentially a 

LGM analysis in which the focal variable of change is modeled as a latent variable 

represented by multiple indicators.  Technical details of LGM and MLGM are described in 

Chan (1998). 

LGM represents the longitudinal data by modeling interindividual differences in the 

attributes (i.e., parameters) of intraindividual changes over time (i.e., individual growth 

curves).  In an LGM analysis, we can estimate the means and variances of the two growth 

parameters (intercept and slope factors) and examine if the two parameters are correlated 

with each other.  The LGM analysis can also be used to examine associations between the 

growth parameters and individual difference predictor variables.  For example, in newcomer 

adaptation research, we can use LGM to predict initial status and rate of change in 

information seeking from proactive personality (Chan & Schmitt, 2000).  Different univariate 

latent growth models can also be combined to form a multivariate latent growth model.  In a 

multivariate growth model, parameters from different change trajectories can be correlated to 

examine cross-domain associations (i.e., relationships between two focal variables being 

examined for intraindividual change over time).  For example, in a study of interpersonal 
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relationships, rate of change in relationship building can be correlated with rate of change in 

social integration.  One or more predictors can also be included in the multivariate model, 

thereby allowing hypotheses regarding differential predictions (using the same individual 

predictor) of intraindividual change across domains can be tested.  Finally, LGMs (univariate 

or multivariate) can be fitted simultaneously to different groups of individuals (e.g., gender, 

ethnic, occupational, experimental groups) and multiple-group LGM analyses can be 

performed to test for across-groups invariance of one or more of the specified relationships in 

the latent growth model. 

To incorporate measurement invariance concerns in the model specification, LGM 

can be extended to a MLGM in which the focal variable of change is modeled as a latent 

variable assessed by multiple indicators as opposed to a manifest variable typically the case 

in prior work on LGM.  The use of multiple indicators in a latent growth model allows both 

random and nonrandom measurement errors to be taken into account when deriving the 

intercept and slope/shape factors.  The use of multiple indicators to assess the focal construct 

allows reliable (nonrandom) variance to be partitioned into true score common (construct) 

variance and true score unique variance.  True score unique variance is nonrandom and it is 

that portion of variance in a measure that is not shared with other measures of the same 

construct.  In LGM, the same measures are repeatedly administered over time.  Hence, a 

failure to partition nonrandom variance into true construct variance and unique variance leads 

to distorted (inflated) estimates of true change in the focal construct over time.  Because only 

scale/composite level but no item-level (multiple indicator) information on the focal variable 

is used in the standard LGM, the procedure does not provide the isolation of nonrandom error 

variance from reliable variance and it takes only random errors into consideration.  MLGM 

addresses the problem. 

Chan (1998) demonstrated how the above questions on measurement invariance, 

functional forms of intraindividual changes, and other fundamental questions on change over 

time may be answered in an integrative two-phase latent variable analytical procedure that 

combines longitudinal means and covariance structures analysis and multiple-indicator latent 

growth modeling.  In Phase 1 of the procedure, longitudinal mean and covariance analysis, 

which is similar to longitudinal factor analysis except that both the indictor intercepts and 

factor means are also estimated, is used to examine issues of measurement invariance across 

time and across groups.  Establishing invariance provides evidence that results of subsequent 

growth modeling constituting Phase 2 of the procedure are meaningful.  By building 

invariance assessments as the first logical step to longitudinal modeling, this integrative 
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procedure contrasts with the analytical models that left untested the assumption of 

measurement invariance across time or groups.  In addition to invariance assessments, Phase 

1 of the procedure helps in the preliminary assessment of the basic form of intraindividual 

change by identifying the constraints on the patterns of true score (factor) means and 

variances over time.  In Phase 2, multiple-indicator longitudinal growth modeling is used to 

directly assess change over time by explicitly and simultaneously modeling the group and 

individual growth trajectories of the focal variable as well as their relationships to other time-

invariant predictors and/or time-varying correlates (i.e., growth trajectories in a different 

domain).  As explained in Chan (1998), longitudinal mean and covariance analysis and 

multiple-indicator latent growth modeling together provide a unified framework for directly 

addressing the various fundamental questions on change over time. 

Chan (1998) provided a complete instructive numerical example, with LISREL 

command specifications, on how to fit multiple-indicator latent growth models and interpret 

the results. 

Longitudinal covariance structures analyses such as longitudinal factor analysis, 

longitudinal means and covariance structures analysis, and latent growth modeling are 

appropriate when the latent variables are continuous in nature.  When the latent variables are 

discrete (i.e., categorical) in nature, latent class analysis is appropriate.  When latent class 

modeling is applied to discrete longitudinal data, the analysis is known as latent transition 

analysis which allows the researcher to specify and test stage-sequential development or 

changes over time.  An excellent introduction to latent class analysis and latent transition 

analysis is provided by Collins and Wugalter (1992).  Recently, Muthen (2004) developed an 

inclusive framework known as general growth mixture modeling which combines latent 

growth models and latent class models.  This general framework allows the researcher to 

identify latent classes characterized by different patterns of latent growth.  These mixture 

models are useful because they allow us, in a single integrated analysis, to identify groups of 

individuals with qualitatively different growth trajectories. 

Not all latent variable approaches are suited for modeling changes over time.  For 

example, autoregressive latent modeling, which is one of the simplest latent variable 

approaches, is not adequate for the analysis of longitudinal data representing intraindividual 

change over time.  Autoregressive models estimate scores on a variable based on values of 

the same variable.  Proponents of the inclusion of autoregressive models in the longitudinal 

modeling of intraindividual change argue that the autoregressive effect (the effect of the Time 

1 measure on the Time 2 measure of the same variable) is a legitimate competing explanation 
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for an observed effect and therefore must be included before causal inferences can be made 

regarding the influence of other predictors of change over time.  The inclusion of 

autoregressive effects in longitudinal modeling of intraindividual change is problematic 

because they tend to remove all potentially important predictors of change except those that 

predict changes in rank order of the observations over time.  For example, in a monotonically 

stable growth process in which all individuals increase at a constant rate (i.e., linearly) while 

maintaining the same rank order, the important predictors of the individual slopes would be 

eliminated with the inclusion of autoregressive effects.  The autoregressive model fails when 

intraindividual change is accompanied by high-rank-order stability over time (Stoolmiller & 

Bank, 1995).  In addition, the autoregressive effect is questionable as a true causal effect and 

researchers have argued that proponents of the application of autoregressive latent models in 

longitudinal modeling have misinterpreted the autoregressive effect as a parameter 

representing true causal effect when it is in fact a stability coefficient representing the 

boundary or initial values of the system.  For more comprehensive discussions of the 

problems associated with including autoregressive effects in longitudinal modeling of 

intraindividual change, see Rogosa and Willett (1985) and Stoolmiller and Bank (1995). 

 

The Multilevel Structure of Longitudinal Data 

The preceding section on modeling multilevel phenomena discusses the “traditional” 

type of multilevel data in which individuals are nested within groups.  In modeling changes 

over time using longitudinal data, we are in fact dealing with a type of multilevel data in 

which the multilevel structure is less obvious.  Longitudinal data are obtained from 

measurements repeated on the same individuals over time, and hence a multilevel structure is 

established with the repeated observations over time (Level 1) nested within individuals 

(Level 2).  While the multilevel analysis of cross-sectional grouped data is concerned with 

interindividual differences associated with group membership, multilevel analysis of 

longitudinal data is concerned with modeling intraindividual change over time.  Although 

multilevel regression models can also be used to analyze these changes over time (e.g., Bryk 

& Raudenbush, 1992), the issues of changes over time are often very complex and may 

involve facets of change over time (e.g., conceptual changes in the constructs, changes in 

calibration of measurement, various types of time-related error-covariance structures) that are 

not readily handled by multilevel regression models.  In modeling change over time, we are 

primarily concerned with describing the nature of the trajectory of change and accounting for 

the interindividual differences in the functional forms or parameters of the trajectories by 
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relating them to explanatory variables.  The explanatory variables may be in the form of 

experimentally manipulated or naturally occurring groups, time-invariant predictors, time-

varying correlates, or the trajectories of a different variable.  Latent growth modeling and its 

extensions are well suited to address these issues.  Chan (1998) provided a detailed review of 

these issues and the application of latent growth modeling techniques, as well as an overview 

comparison between latent variable models and multilevel regression models. 

Latent variable models can be specified and tested using any of the widely available 

structural equation modeling programs such as AMOS (Arbuckle, 1999), EQS (Bentler, 

2004), and LISREL (Joreskog & Sorbom, 1996), although the procedures for multilevel 

latent models are somewhat difficult to implement at times because the programs were not 

specifically written for multilevel analyses. MPLUS (Muthen & Muthen, 2004) is a structural 

equation modeling program that has specifically incorporated features for estimating 

multilevel models and is well suited to specify and test a variety of different multilevel latent 

variable models including mixture of latent class and latent growth models.  Undoubtedly, the 

features of the above programs are likely to change as technology and knowledge change. 

 

Internet Resources 

 There are several useful Internet resources on multilevel and latent variable analysis. 

For multilevel analysis, it is useful to begin by going to comprehensive websites that give a 

variety of information on multilevel research including publications, newsletters, workshops, 

multilevel datasets, software reviews, and useful links to other websites.  Examples include 

the UCLA Multilevel Modeling Portal (www.ats.ucla.edu/stat/mlm/) and the Web site of the 

Center for Multilevel Modeling (http://multilevel.ioe.ac.uk/index.html).  The latter Web site 

provides a comprehensive list of references on multilevel modeling, an excellent set of 

reviews of computer software for performing multilevel analyses, and a library containing 

multilevel datasets that you can download for purposes of teaching and training in the 

application of multilevel models.  There is also an active Internet discussion list where 

subscribers discuss conceptual and statistical problems in multilevel modeling ranging from 

elementary to advanced issues (www.jiscmail.ac.uk/lists/multilevel.html). 

SEMNET is an excellent electronic mail network for anyone interested in discussing 

with researchers on any topics related to SEM and latent variable analyses.  The website has 

an amazing archive of the discussions, organized by month dating back to 1993 

(http://bama.ua.edu/archives/semnet.html). 
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The RMNET is a question-and-answer network for members of the Research Methods 

Division of the Academy of Management.  The questions may be related to any research 

method issue concerning design, measurement and data analysis.  Subscribers to RMNET 

include a diversity of researchers ranging from beginning graduate students to established 

scholars who have published on advances in analytical strategies.  More information 

including how to join the RMNET are available on 

http://division.aomonline.org/rm/rmnet.html. 

Several researchers also maintained their personal websites on specific analytical 

strategies.  For example, David Kenny’s website provides useful information on mediation 

analysis (http://davidakenny.net/cm/mediate.htm) and Herman Aguinis’ website provides 

useful information on interaction analysis (http://mypage.iu.edu/~haguinis/mmr/iindex.html). 

Internet resources are updated very rapidly and the reader should stay abreast by using 

search engines or contacting relevant professional organizations such as Division 5 

(Evaluation, Measurement and Statistics) of the American Psychological Association and the 

Research Methods Division of the Academy of Management. 
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